Recommending Users in Social Networks by Integrating Local and Global Reputation

P. De Meo, <u>F.Messina</u>¹, D. Rosaci, ² G. M. L. Sarné²

 $^1 \mbox{DICAM}, \mbox{ University of Messina, Italy}$ $^2 \mbox{Dipartimento di Matematica ed Informatica University of Catania, Italy}$ $^3 \mbox{University Mediterranea of Reggio Calabria, Italy}$

IDCS 2014 - Amantea (CS), Italy - 24/09/2014

Introduction

Automatically suggesting the trustworthiness a user should assign to the other $\overline{\mathsf{OSN}}$ members is an important task in $\overline{\mathsf{OSNs}}$.

Global reputation models are based on feedbacks.

• (-) Malicious and fraudulent behaviors, which potentially makes unreliable the feedbacks themselves.

We propose to integrate global reputation models with a local reputation, computed on the user ego-network.

Experiments shows that

- the usefulness of global reputation is significative only when ego-networks are small in size.
- Integrating global and local reputation allows to predict trust with a very high level of precision.

Ego network

We represent an OSN S as a <u>directed network</u> $G_S = \langle N, A \rangle$, where N is the set of nodes and A is the set of arcs.

Each node $n \in N$ is a user $u_n \in U$, each arc $c \in A$ is a pair (a, b), with $a, b \in N$, i.e. "trust link" between u_a and u_b (i.e. a trusts b).

Ego-network of a user u is the sub-graph $G_u = \langle T, P \rangle$

- T is the set of nodes $n(k) \in U$ such that there exists a path $n(u) \rightsquigarrow n(k)$;
- P is the <u>set of the arcs</u> belonging to the paths existing between n(u) and n(k), for each $k \in T$.

Local reputation measure $\lambda(u, v)$

Given a ego network G_u , we define

- 1-Local Network $L(u,v) = \{z \in N : z \in G_u \land \exists (z,v) \in G_u\}$. I.e. all the nodes z in G_u such that z trust v.
- 2-Local reputation $\lambda(u,v)$, i.e. how much, in overall, the users belonging to the ego network of u trust v:

Let be
$$s(u,v) = \sum_{k \in L(u,v), k \neq u,v} \left\{ \frac{1}{2^{l_{u,k}-1}} \right\} \qquad l_{u,k} := |u \rightsquigarrow k|$$

then
$$\lambda(u, v) = \frac{s(u, v)}{\max\limits_{z \in U, z \neq u, v} s(u, z)}$$

Local reputation measure $\lambda(u, v)$

- (B) The ego-network of node a, (C) nodes contributing to $\lambda(a,b)$.
- Computing $\lambda(a,b)$ means considering nodes g ,c and h, then $\lambda(a,b)=1$.
- Computing $\lambda(a,h)$ means considering only node g as contributor, then $\lambda(a,h)=1/2.5=0.4.$

Global trust

Users $u \in U$ can make actions a_u which can be evaluated by the other users $k \in U, k \neq u$ by means of feedbacks $f(k, a_u^i)$, e.g.:

 EPINIONS or CIAO, on which users provide reviews of some items, and the other users provided the helpfulness of the reviews (i.e. reputation).

We define a global reputation of a user u which performed p actions a_u^i as:

$$\gamma(u) = \frac{\displaystyle\sum_{i=1,..,p} \sum_{k \in U, k \neq u} f(k, a_u^i)}{p \cdot ||U|| - 1}$$

Suggesting trust

Our approach for suggesting/predicting the trust of u to v is to combine local and global reputation:

$$\sigma(u,v) = \omega \cdot \lambda(u,v) + (1-\omega) \cdot \gamma(v)$$

$$st(u,v) = egin{cases} 1 & ext{if } \sigma(u,v) > au \ 0 & ext{otherwise} \end{cases}$$

Where au is a suitable threshold.

Tuning the prediction model

To find optimal values for ω (weight) and τ (threshold), we examine a training-set $TR = \langle U*, A*, F*, T* \rangle$:

- $U* \subset U$ is a subset of the users of S;
- $A* \subset A$ actions performed by the users of U*;
- $F* \subset F$ feedbacks provided within U^* for the actions in A*;
- T* contains the trust values t(u, v), for all $u, v \in U^*$.

$$\epsilon(\omega,\tau) = \frac{\sum_{u,v\in U, u\neq v} |st(u,v) - t(u,v)|}{(\|U\| - 1)^2} \tag{1}$$

Have to look for ω^* and τ^* minimising $\epsilon(\omega,\tau)$, i.e.:

$$\epsilon(\omega^*, \tau^*) = \min \frac{\sum_{u,v \in U, u \neq v} |st(u,v) - t(u,v)|}{(\|U\| - 1)^2}$$
(2)

Experiments

Real data extracted from the well-known CIAO social network.

We examined how the global error $\epsilon(\omega, \tau)$ depends on the mean value ||L(u, v)||, say ρ_u .

Experiments

$_{-}$ $ ho_{u}$	ω^*	Е	E ($\omega=1$)
733	0.5-0.6	1%	5%
2560	0.5-0.6	2%	6%
7360	0.6	5%	6%
14599	1.0	8.5%	8%

 $\rho_u = 733 - 2560$: for this users it is important to merge both local and global reputation in equal measure.

- the local ego-network is not sufficiently large to suggest a correct trust without the help of the global reputation.
- Note that for $\rho=2560$, the difference from using high values of ω is less important.

 $\rho_u = 7360 - 14599$: users having very high values of ρ_u , the local reputation approximates the global one.

Conclusions

The proposed model aims at integrating local and global reputation in an OSN.

- ullet ω is the importance given to local reputation;
- \bullet au is the reputation threshold under which a user is considered unreliable;
- ullet ho represents the dimension of the user ego-network.

Some experiments have shown that the global reputation is relevant only for those users having an ego-network small enough.

Instead, in the case of users having large ego-networks, local reputation is enough to predict trustworthiness with a very high precision.

Thank you!